KAPPA: Kinetic Approach to Physical Processes in Atmospheres library in C⁺⁺

Lorenzo Campoli, George P. Oblarenko, Elena V. Kustova Saint Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg, 199034 Russia

St Petersburg University www.spbu.ru

Abstract

KAPPA is an open-source object-oriented C++ library for calculation of physico-chemical relaxation rates and transport properties in various approximations of kinetic theory, including multi-temperature and state-to-state (STS) suited for strongly non-equilibrium reacting flows. An overview of the KAPPA implementation along with the computation of transport properties is presented for the STS model.

Mathematical modelKAPPA APIExperimental results show that relaxation times of
different processes in reacting mixtures [1] often ver-
ify the following relation:
 $\tau_{el} < \tau_{rot} \ll \tau_{vibr} < \tau_{react} \sim \theta$ (1)Interaction models
CMakeLists.txtInteraction models
currently available in KAPPA:
• Collision integrals: Rigid Sphere, Variable Soft Sphere, Lennard-
Jones, Born-Mayer, ESA phenomenological potentials;
• VT, VV-exchanges: SSH, FHO QCT-based models;
• Exchange reaction: the Arrhenius law, Rusanov-Fridman, Polak,

A closed set of macroscopic equations for the macroscopic parameter $n_{ci}(\mathbf{r}, t)$, $\mathbf{v}(\mathbf{r}, t)$ and $T(\mathbf{r}, t)$ consists of the conservation equations for the momentum and total energy coupled with the detailed vibrationchemical kinetics for vibrational levels [2]:

$$\frac{d\rho}{dt} + \nabla \cdot (\rho \mathbf{v}) = 0 \qquad (2)$$

$$\rho \frac{d\mathbf{v}}{dt} + \nabla \cdot \mathbf{P} = 0 \qquad (3)$$

$$\rho \frac{dU}{dt} + \nabla \cdot \mathbf{q} + P : \nabla \mathbf{v} = 0 \qquad (4)$$

$$\frac{dn_{ci}}{dt} + n_{ci} \nabla \cdot \mathbf{v} + \nabla \cdot (n_{ci} \mathbf{V}_{ci}) = R_{ci} \qquad (5)$$

$$c = 1, ..., L, \quad i = 0..., L_c \qquad (6)$$

where the number density of molecules of species cat the vibrational level i is: The specific total energy U is given by:

$$\rho U\left(\mathbf{r},t\right) = \frac{3}{2}nkT + \sum_{ci} \langle \varepsilon^{ci} \rangle n_{ci} + \sum_{ci} \varepsilon^{c}_{i} n_{ci} + \sum_{c} \varepsilon_{c} n_{c}$$

$$(7)$$

$$\langle \varepsilon^{ci} \rangle, \varepsilon^{c}_{i} \text{ and } \varepsilon_{c} \text{ are the average rotational, vibrational}$$

- Exchange reaction: the Arrhenius law, Rusanov-Fridman, Polak, Warnatz, Aliat, QCT-based models;
- Dissociation: Arrhenius law, Treanor-Marrone, (along with its modification), QCT-based models;
- Ionization: Arrhenius law;
- Relaxation times: Parker, Millikan-White, Park models.

Features

- accurate and efficient computation of transport and chemical kinetic properties for multicomponent, non-equilibrium flows;
- easily extendable and maintainable;
- couple with existing CFD tool;
- self-documenting database format;
- open-source, to promote code and data sharing.

Application: transport coefficients

and formation energy, respectively. The pressure tensor \mathbf{P} is obtained as:

$$\mathbf{P} = (p - p_{rel}) \mathbf{I} - 2\eta \mathbf{S} - \zeta \nabla \cdot \mathbf{v} \mathbf{I}$$
(8)

$$\eta = \frac{kT}{10} [\mathbf{B}, \mathbf{B}], \quad \zeta = kT[F, F], \quad p_{rel} = kT[F, G]$$
(9)

 p_{rel} is the relaxation pressure, η and ζ are the coefficients of shear and bulk viscosity, respectively. Bracket integrals [A, B] are introduced in [2]. The diffusion velocity is specified by:

$$\mathbf{V}_{ci} = -\sum_{dk} D_{cidk} \mathbf{d}_{dk} - D_{Tci} \nabla \ln T \qquad (10)$$
$$D_{cidk} = \frac{1}{3n} [\mathbf{D}^{ci}, \mathbf{D}^{dk}], \quad D_{Tci} = \frac{1}{3n} [\mathbf{D}^{ci}, \mathbf{A}] \qquad (11)$$
$$\mathbf{d}_{ci} = \nabla \left(\frac{n_{ci}}{n}\right) + \left(\frac{n_{ci}}{n} - \frac{\rho_{ci}}{\rho}\right) \nabla \ln p \qquad (12)$$

where D_{cidk} and D_{Tci} are the multicomponent and thermal diffusion coefficients and \mathbf{d}_{ci} the species specific driving forces. The total heat flux is:

$$q = -\lambda' \nabla T - p \sum D_{Tci} \mathbf{d}_{ci} +$$

Figure 1. Shear viscosity η for N_2 (left), O_2 (center), NO (right) at ambient pressure. Comparison of numerical [2] and experimental [3, 4] results.

Figure 2. Bulk viscosity coefficients ζ (left) computed for $N_2 - N$, $O_2 - O$ and air5 at fixed atomic molar fractions at ambient pressure. Dimensionless self-diffusion coefficients (right) for $N_2 - N$ with $x_N = 50$.

(13) $\sum_{i} \left(\frac{5}{2} kT + \langle \varepsilon_{j}^{ci} \rangle_{rot} + \varepsilon_{i}^{c} + \varepsilon_{c} \right) n_{ci} \mathbf{V}_{ci}$

Thermal conductivity coefficient coefficients are:

$$\lambda' = \lambda_{tr} + \lambda_{rot} = \frac{k}{3} [\mathbf{A}, \mathbf{A}] \tag{14}$$

Acknowledgements

This study is supported by Saint Petersburg State University (project No. 6.37.206.2016). L. Campoli acknowledges that he is employed by Saint-Petersburg State University in the frame of postdoctoral fellowship 02/7-79-226.

Conclusion and Perpectives

- The KAPPA library for kinetic theory computation in strongly non-equilibrium reacting flow is presented, its capabilities, structure and implementation are discussed;
- Results of the computation of transport properties according to the STS approach are given;
- Parallelization, ionization flow extension, 1T and 2T validation, CFD solver interface.

References

- [1] Y. Stupochenko, S. Losev, A. Osipov, Relaxation processes in shock waves, in: Relaxation in Shock Waves, Springer, 1967, pp. 206–305.
- [2] E. Nagnibeda, E. Kustova, Non-equilibrium reacting gas flows: kinetic theory of transport and relaxation processes, Springer Science & Business Media, 2009. doi:10.1007/978-3-642-01390-4.
- [3] N. B. Vargaftik, Handbook of Physical Properties of Liquids and Gases Pure Substances and Mixtures, 2nd edn, Hemisphere Publishing Corporation, New York, NY, 1975.
- [4] Y. Touloukian, S. Saxena, P. Hestermans, Viscosity, 1974.